Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.504
Filtrar
1.
Nat Commun ; 15(1): 3420, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658531

RESUMO

Poly-ß-(1-6)-N-acetylglucosamine (PNAG) is an important vaccine target, expressed on many pathogens. A critical hurdle in developing PNAG based vaccine is that the impacts of the number and the position of free amine vs N-acetylation on its antigenicity are not well understood. In this work, a divergent strategy is developed to synthesize a comprehensive library of 32 PNAG pentasaccharides. This library enables the identification of PNAG sequences with specific patterns of free amines as epitopes for vaccines against Staphylococcus aureus (S. aureus), an important human pathogen. Active vaccination with the conjugate of discovered PNAG epitope with mutant bacteriophage Qß as a vaccine carrier as well as passive vaccination with diluted rabbit antisera provides mice with near complete protection against infections by S. aureus including methicillin-resistant S. aureus (MRSA). Thus, the comprehensive PNAG pentasaccharide library is an exciting tool to empower the design of next generation vaccines.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Camundongos , Staphylococcus aureus/imunologia , Coelhos , Vacinas Antiestafilocócicas/imunologia , Vacinas Antiestafilocócicas/administração & dosagem , Feminino , Staphylococcus aureus Resistente à Meticilina/imunologia , Acetilglucosamina/imunologia , Humanos , Epitopos/imunologia , Camundongos Endogâmicos BALB C
2.
J Invest Dermatol ; 144(5): 969-977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530677

RESUMO

Atopic dermatitis (AD) is a multifactorial, heterogeneous disease characterized by epidermal barrier dysfunction, immune system dysregulation, and skin microbiome alterations. Skin microbiome studies in AD have demonstrated that disease flares are associated with microbial shifts, particularly Staphylococcus aureus predominance. AD-associated S. aureus strains differ from those in healthy individuals across various genomic loci, including virulence factors, adhesion proteins, and proinflammatory molecules-which may contribute to complex microbiome barrier-immune system interactions in AD. Different microbially based treatments for AD have been explored, and their future therapeutic successes will depend on a deeper understanding of the potential microbial contributions to the disease.


Assuntos
Dermatite Atópica , Microbiota , Pele , Staphylococcus aureus , Dermatite Atópica/microbiologia , Dermatite Atópica/imunologia , Humanos , Microbiota/imunologia , Pele/microbiologia , Pele/imunologia , Staphylococcus aureus/imunologia
3.
J Innate Immun ; 16(1): 143-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38310854

RESUMO

BACKGROUND: Upon infection, mucosal tissues activate a brisk inflammatory response to clear the pathogen, i.e., resistance to disease. Resistance to disease is orchestrated by tissue-resident macrophages, which undergo profound metabolic reprogramming after sensing the pathogen. These metabolically activated macrophages release many inflammatory factors, which promote their bactericidal function. However, in immunocompetent individuals, pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella evade this type of immunity, generating communities that thrive for the long term. SUMMARY: These organisms develop features that render them less susceptible to eradication, such as biofilms and increased tolerance to antibiotics. Furthermore, after antibiotic therapy withdrawal, "persister" cells rapidly upsurge, triggering inflammatory relapses that worsen host health. How these pathogens persisted in inflamed tissues replete with activated macrophages remains poorly understood. KEY MESSAGES: In this review, we discuss recent findings indicating that the ability of P. aeruginosa, S. aureus, and Salmonella to evolve biofilms and antibiotic tolerance is promoted by the similar metabolic routes that regulate macrophage metabolic reprogramming.


Assuntos
Antibacterianos , Biofilmes , Macrófagos , Biofilmes/efeitos dos fármacos , Humanos , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Antibacterianos/farmacologia , Infecções Bacterianas/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Farmacorresistência Bacteriana , Evasão da Resposta Imune
4.
Nature ; 625(7996): 797-804, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200316

RESUMO

Prokaryotic type III CRISPR-Cas systems provide immunity against viruses and plasmids using CRISPR-associated Rossman fold (CARF) protein effectors1-5. Recognition of transcripts of these invaders with sequences that are complementary to CRISPR RNA guides leads to the production of cyclic oligoadenylate second messengers, which bind CARF domains and trigger the activity of an effector domain6,7. Whereas most effectors degrade host and invader nucleic acids, some are predicted to contain transmembrane helices without an enzymatic function. Whether and how these CARF-transmembrane helix fusion proteins facilitate the type III CRISPR-Cas immune response remains unknown. Here we investigate the role of cyclic oligoadenylate-activated membrane protein 1 (Cam1) during type III CRISPR immunity. Structural and biochemical analyses reveal that the CARF domains of a Cam1 dimer bind cyclic tetra-adenylate second messengers. In vivo, Cam1 localizes to the membrane, is predicted to form a tetrameric transmembrane pore, and provides defence against viral infection through the induction of membrane depolarization and growth arrest. These results reveal that CRISPR immunity does not always operate through the degradation of nucleic acids, but is instead mediated via a wider range of cellular responses.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Potenciais da Membrana , Staphylococcus aureus , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Nucleotídeos Cíclicos/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Sistemas do Segundo Mensageiro , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia
6.
Autophagy ; 19(10): 2811-2813, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36779581

RESUMO

Previously considered as an exclusive extracellular bacterium, Staphylococcus aureus has been shown to be able to invade many cells in vitro and in humans. Once inside the host cell, both cytosolic and endosome-associated S. aureus strongly induce macroautophagy/autophagy. Whether autophagy fosters S. aureus intracellular survival or clearance remains unclear. The YAP1-TEAD axis regulates the expression of target genes controlling the cell fate (e.g., proliferation, migration, cell cycle …). Growing evidence indicates that YAP1-TEAD also regulates autophagy and lysosomal pathways. Recently we showed that the YAP1-TEAD axis promotes autophagy and lysosome biogenesis to restrict S. aureus intracellular replication. We also discovered that the C3 exoenzyme-like EDIN-B toxin produced by the pathogenic S. aureus ST80 strain inhibits YAP1 nuclear translocation resulting in a strong increase of intracellular S. aureus burden.


Assuntos
Autofagia , Espaço Intracelular , Staphylococcus aureus , Fatores de Transcrição de Domínio TEA , Humanos , Autofagia/imunologia , Células HEK293 , Espaço Intracelular/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/classificação , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Fatores de Transcrição de Domínio TEA/metabolismo , Técnicas In Vitro
7.
BMC Microbiol ; 22(1): 219, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115948

RESUMO

BACKGROUND: The prevalence of Staphylococcus aureus isolates carrying the Panton-Valentine leukocidin (PVL) gene is higher in Africa (≈50%) compared to Europe (< 5%). The study aimed to measure anti-PVL-antibodies in Africans and Germans in a multi-center study and to test whether detected antibodies can neutralize the cytotoxic effect of PVL on polymorphonuclear leukocytes (PMNs). METHODS: Sera from asymptomatic Africans (n = 22, Nigeria, Gabon) and Caucasians (n = 22, Germany) were used to quantify antibody titers against PVL and α-hemolysin (in arbitrary units [AU]) by ELISA. PMNs from one African and German donor were exposed to 5 nM recombinant PVL to measure the neutralizing effect of serial dilutions of pooled sera from African and Caucasian participants, or donor sera at 0.625 and 2.5% (v/v). RESULTS: Anti-PVL-antibodies were significantly higher in Africans than in Germans (1.9 vs. 0.7 AU, p < 0.0001). The pooled sera from the study participants neutralized the cytotoxic effect of PVL on African and German PMNs in a dose dependent manner. Also, neutralization of PVL on PMNs from the African and German donors had a stronger effect with African sera (half-maximal inhibitory concentration (IC50) = 0.27 and 0.47%, respectively) compared to Caucasian sera (IC50 = 3.51 and 3.59% respectively). CONCLUSION: Africans have higher levels of neutralizing anti-PVL-antibodies. It remains unclear if or at what level these antibodies protect against PVL-related diseases.


Assuntos
Anticorpos Neutralizantes/sangue , Leucocidinas , Neutrófilos , Infecções Estafilocócicas , Staphylococcus aureus , Anticorpos Neutralizantes/imunologia , Toxinas Bacterianas/sangue , Toxinas Bacterianas/imunologia , Exotoxinas/sangue , Exotoxinas/imunologia , Alemanha/epidemiologia , Proteínas Hemolisinas , Humanos , Leucocidinas/sangue , Leucocidinas/imunologia , Neutrófilos/imunologia , Nigéria/epidemiologia , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
8.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076953

RESUMO

Disruption of the skin microbial balance can exacerbate certain skin diseases and affect prognosis and treatment. Changes in the distribution and prevalence of certain microbial species on the skin, such as Staphylococcus aureus (SA), can impact the development of severe atopic dermatitis (AD) or psoriasis (Pso). A dysfunctional skin barrier develops in AD and Pso due to SA colonization, resulting in keratinization and chronic or progressive chronic inflammation. Disruption of the skin barrier following SA colonization can elevate the production of T helper 2 (Th2)-derived cytokines, which can cause an imbalance in Th1, Th2, and Th17 cells. This study examined the ability of potential therapeutic skin microbiomes, such as Cutibacterium avidum R-CH3 and Staphylococcus hominis R9, to inhibit SA biofilm formation and restore skin barrier function-related genes through the activation of the aryl hydrocarbon receptor (AhR) and the nuclear factor erythroid-2-related factor 2 (Nrf2) downstream target. We observed that IL-4/IL-13-induced downregulation of FLG, LOR, and IVL induced by SA colonization could be reversed by dual AhR/Nrf2 activation. Further, OVOL1 expression may be modulated by functional microbiomes via dual AhR/Nrf2 activation. Our results suggest that our potential therapeutic skin microbiomes can prevent SA-derived Th2-biased skin barrier disruption via IL-13 and IL-4-dependent FLG deregulation, STAT3 activation, and AhR-mediated STAT6 expression.


Assuntos
Microbiota , Psoríase , Receptores de Hidrocarboneto Arílico , Staphylococcus aureus , Humanos , Imunidade , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Proteínas de Filamentos Intermediários/genética , Queratinócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Psoríase/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Pele/metabolismo , Pele/microbiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo
9.
Front Cell Infect Microbiol ; 12: 898796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909964

RESUMO

Calprotectin is a transition metal chelating protein of the innate immune response known to exert nutritional immunity upon microbial infection. It is abundantly released during inflammation and is therefore found at sites occupied by pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The metal limitation induced by this protein has previously been shown to mediate P. aeruginosa and S. aureus co-culture. In addition to the transition metal sequestration role of calprotectin, it has also been shown to have metal-independent antimicrobial activity via direct cell contact. Therefore, we sought to assess the impact of this protein on the biofilm architecture of P. aeruginosa and S. aureus in monomicrobial and polymicrobial culture. The experiments described in this report reveal novel aspects of calprotectin's interaction with biofilm communities of P. aeruginosa and S. aureus discovered using scanning electron microscopy and confocal laser scanning microscopy. Our results indicate that calprotectin can interact with microbial cells by stimulating encapsulation in mesh-like structures. This physical interaction leads to compositional changes in the biofilm extracellular polymeric substance (EPS) in both P. aeruginosa and S. aureus.


Assuntos
Biofilmes , Imunidade Inata , Complexo Antígeno L1 Leucocitário , Pseudomonas aeruginosa , Staphylococcus aureus , Antibacterianos/imunologia , Antibacterianos/farmacologia , Matriz Extracelular de Substâncias Poliméricas/genética , Matriz Extracelular de Substâncias Poliméricas/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Complexo Antígeno L1 Leucocitário/genética , Complexo Antígeno L1 Leucocitário/imunologia , Fagocitose , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia
10.
Proc Natl Acad Sci U S A ; 119(25): e2116027119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704759

RESUMO

The epidermis is the outermost layer of the skin and the body's primary barrier to external pathogens; however, the early epidermal immune response remains to be mechanistically understood. We show that the chemokine CXCL14, produced by epidermal keratinocytes, exhibits robust circadian fluctuations and initiates innate immunity. Clearance of the skin pathogen Staphylococcus aureus in nocturnal mice was associated with CXCL14 expression, which was high during subjective daytime and low at night. In contrast, in marmosets, a diurnal primate, circadian CXCL14 expression was reversed. Rhythmically expressed CXCL14 binds to S. aureus DNA and induces inflammatory cytokine production by activating Toll-like receptor (TLR)9-dependent innate pathways in dendritic cells and macrophages underneath the epidermis. CXCL14 also promoted phagocytosis by macrophages in a TLR9-independent manner. These data indicate that circadian production of the epidermal chemokine CXCL14 rhythmically suppresses skin bacterial proliferation in mammals by activating the innate immune system.


Assuntos
Epiderme , Imunidade Inata , Dermatopatias Bacterianas , Animais , Quimiocinas CXC/genética , Quimiocinas CXC/imunologia , Relógios Circadianos/imunologia , Epiderme/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Queratinócitos/imunologia , Mamíferos , Camundongos , Dermatopatias Bacterianas/imunologia , Dermatopatias Bacterianas/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia
11.
J Immunol ; 208(5): 1170-1179, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35140134

RESUMO

Mucosa-associated invariant T (MAIT) cells recognize bacterial riboflavin metabolite Ags presented by MHC class Ib-related protein (MR1) and play important roles in immune control of microbes that synthesize riboflavin. This includes the pathobiont Staphylococcus aureus, which can also express a range of virulence factors, including the secreted toxin leukocidin ED (LukED). In this study, we found that human MAIT cells are hypersensitive to LukED-mediated lysis and lost on exposure to the toxin, leaving a T cell population devoid of MAIT cells. The cytolytic effect of LukED on MAIT cells was rapid and occurred at toxin concentrations lower than those required for toxicity against conventional T cells. Furthermore, this coincided with high MAIT cell expression of CCR5, and loss of these cells was efficiently inhibited by the CCR5 inhibitor maraviroc. Interestingly, exposure and preactivation of MAIT cells with IL-12 and IL-18, or activation via TCR triggering, partially protected from LukED toxicity. Furthermore, analysis of NK cells indicated that LukED targeted the mature cytotoxic CD57+ NK cell subset in a CCR5-independent manner. Overall, these results indicate that LukED efficiently eliminates immune cells that can respond rapidly to S. aureus in an innate fashion without the need for clonal expansion, and that MAIT cells are exceptionally vulnerable to this toxin. Thus, the findings support a model where LukED secretion may allow S. aureus to avoid recognition by the rapid cell-mediated responses mediated by MAIT cells and NK cells.


Assuntos
Evasão da Resposta Imune/imunologia , Células Matadoras Naturais/imunologia , Leucocidinas/metabolismo , Células T Invariantes Associadas à Mucosa/patologia , Receptores CCR5/metabolismo , Staphylococcus aureus/patogenicidade , Antagonistas dos Receptores CCR5/farmacologia , Linhagem Celular , Humanos , Subunidade p35 da Interleucina-12/metabolismo , Interleucina-18/metabolismo , Ativação Linfocitária/imunologia , Maraviroc/farmacologia , Células T Invariantes Associadas à Mucosa/imunologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Células THP-1 , Fatores de Virulência/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 42(3): 261-276, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35109674

RESUMO

Over the past 10 years, neutrophil extracellular traps (NETs) have become widely accepted as an integral player in immunothrombosis, due to their complex interplay with both pathogens and components of the coagulation system. While the release of NETs is an attempt by neutrophils to trap pathogens and constrain infections, NETs can have bystander effects on the host by inducing uncontrolled thrombosis, inflammation, and tissue damage. From an evolutionary perspective, pathogens have adapted to bypass the host innate immune response. Staphylococcus aureus (S. aureus), in particular, proficiently overcomes NET formation using several virulence factors. Here we review mechanisms of NET formation and how these are intertwined with platelet activation, the release of endothelial von Willebrand factor, and the activation of the coagulation system. We discuss the unique ability of S. aureus to modulate NET formation and alter released NETs, which helps S. aureus to escape from the host's defense mechanisms. We then discuss how platelets and the coagulation system could play a role in NET formation in S. aureus-induced infective endocarditis, and we explain how targeting these complex cellular interactions could reveal novel therapies to treat this disease and other immunothrombotic disorders.


Assuntos
Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/microbiologia , Staphylococcus aureus/patogenicidade , Tromboinflamação/etiologia , Animais , Fatores de Coagulação Sanguínea/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Camundongos , Modelos Cardiovasculares , Modelos Imunológicos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Ativação Plaquetária , Infecções Estafilocócicas/complicações , Staphylococcus aureus/imunologia , Tromboinflamação/imunologia , Tromboinflamação/microbiologia , Fatores de Virulência/imunologia , Fator de von Willebrand/imunologia
13.
PLoS Pathog ; 18(2): e1010240, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143595

RESUMO

Staphylococcus aureus bacteremia (SAB) remains a clinically challenging infection despite extensive investigation. Repurposing medications approved for other indications is appealing as clinical safety profiles have already been established. Ticagrelor, a reversible adenosine diphosphate receptor antagonist that prevents platelet aggregation, is indicated for patients suffering from acute coronary syndrome (ACS). However, some clinical data suggest that patients treated with ticagrelor are less likely to have poor outcomes due to S. aureus infection. There are several potential mechanisms by which ticagrelor may affect S. aureus virulence. These include direct antibacterial activity, up-regulation of the innate immune system through boosting platelet-mediated S. aureus killing, and prevention of S. aureus adhesion to host tissues. In this Pearl, we review the clinical data surrounding ticagrelor and infection as well as explore the evidence surrounding these proposed mechanisms of action. While more evidence is needed before antiplatelet medications formally become part of the arsenal against S. aureus infection, these potential mechanisms represent exciting pathways to target in the host/pathogen interface.


Assuntos
Bacteriemia/tratamento farmacológico , Plaquetas/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Ticagrelor/uso terapêutico , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Inibidores da Agregação Plaquetária/uso terapêutico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia
14.
Elife ; 112022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989676

RESUMO

Implant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and potential treatment of biofilm-related infections. Here, we show that mAbs targeting common surface components of S. aureus can recognize clinically relevant biofilm types. The mAbs were also shown to bind a collection of clinical isolates derived from different biofilm-associated infections (endocarditis, prosthetic joint, catheter). We identify two groups of antibodies: one group that uniquely binds S. aureus in biofilm state and one that recognizes S. aureus in both biofilm and planktonic state. Furthermore, we show that a mAb recognizing wall teichoic acid (clone 4497) specifically localizes to a subcutaneously implanted pre-colonized catheter in mice. In conclusion, we demonstrate the capacity of several human mAbs to detect S. aureus biofilms in vitro and in vivo.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Biofilmes , Staphylococcus aureus/imunologia , Animais , Infecções Relacionadas a Cateter/imunologia , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/terapia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções Estafilocócicas/microbiologia , Ácidos Teicoicos/imunologia , Ácidos Teicoicos/metabolismo
15.
Neuroimmunomodulation ; 29(4): 338-348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100606

RESUMO

OBJECTIVE: In this study, we investigated that the effects and possible mechanisms of the α7 nAChR subunit duplicate form (CHRFAM7A) affected inflammation in the model of intracranial infection. METHODS: Mice of the model group were injected (intracranial injection) with Staphylococcus aureus. Mouse microglial BV2 cell was exposed with 200 ng of LPS for 4 h. RESULTS: CHRFAM7A mRNA expressions were reduced in patients with intracranial infection. CHRFAM7A mRNA and protein expressions were suppressed in mice with intracranial infection in a time-dependent manner. CHRFAM7A reduced inflammation in mice with intracranial infection. The inhibition of CHRFAM7A reduced inflammation in mice with intracranial infection. CHRFAM7A suppressed p38 MAPK in mice with intracranial infection. The inhibition of p38 MAPK shows the effects of CHRFAM7A in intracranial infection. CONCLUSION: Our data demonstrate that the expression of the CHRFAM7A was down-regulated in patients with intracranial infection and reduced inflammation in in vitro model by p38 MAPK, which suggests the potential role of CHRFAM7A as a diagnostic biomarker for intracranial infection.


Assuntos
Encefalite Infecciosa , Infecções Estafilocócicas , Staphylococcus aureus , Receptor Nicotínico de Acetilcolina alfa7 , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Inflamação/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , RNA Mensageiro , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Encefalite Infecciosa/genética , Encefalite Infecciosa/imunologia , Encefalite Infecciosa/microbiologia , Staphylococcus aureus/imunologia , Injeções
16.
Cell Immunol ; 372: 104483, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35085880

RESUMO

The occurring in SR-A/CD204- or CD36-deficient mice increased susceptibility to infections with Staphylococcus aureus (Sa) had traditionally been ascribed to the impairment of macrophage-mediated phagocytosis, which is, however, inconsistent with low effectiveness of unopsonized Sa killing within macrophages and redundant roles of both receptors in this process. We have found that Sa-stimulated cytokine production in mouse macrophages seems to be exclusively mediated by TLR2, mainly from within endosomes in response to Sa-derived lipoteichoic acid. By driving endocytic trafficking of TLR2 and its ligands through the clathrin-dependent pathway, CD36 and SR-A sensitize macrophages to activation by Sa as well as regulate the type and amount of cytokines produced. Additionally, upon direct Sa binding, both receptors autonomously generate anti-inflammatory signaling. Consequently, the delayed induction of acute inflammation in knockout mice may allow for the initial, uncontrolled multiplication of bacteria, stimulating excessive, septic shock-inducing production of inflammatory cytokines in later stages of infection.


Assuntos
Antígenos CD36/imunologia , Citocinas/biossíntese , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Receptores Depuradores Classe A/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Animais , Antígenos CD36/deficiência , Antígenos CD36/genética , Endocitose/imunologia , Ligantes , Receptores de Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Reconhecimento de Padrão/imunologia , Receptores Depuradores Classe A/deficiência , Receptores Depuradores Classe A/genética , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia
17.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055134

RESUMO

The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.


Assuntos
Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/uso terapêutico , Staphylococcus aureus/imunologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/imunologia , Vacinas Antiestafilocócicas/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Desenvolvimento de Vacinas , Fatores de Virulência/genética , Fatores de Virulência/imunologia
18.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058363

RESUMO

Gram-positive organisms with their thick envelope cannot be lysed by complement alone. Nonetheless, antibody-binding on the surface can recruit complement and mark these invaders for uptake and killing by phagocytes, a process known as opsonophagocytosis. The crystallizable fragment of immunoglobulins (Fcγ) is key for complement recruitment. The cell surface of S. aureus is coated with Staphylococcal protein A (SpA). SpA captures the Fcγ domain of IgG and interferes with opsonization by anti-S. aureus antibodies. In principle, the Fcγ domain of therapeutic antibodies could be engineered to avoid the inhibitory activity of SpA. However, the SpA-binding site on Fcγ overlaps with that of the neonatal Fc receptor (FcRn), an interaction that is critical for prolonging the half-life of serum IgG. This evolutionary adaptation poses a challenge for the exploration of Fcγ mutants that can both weaken SpA-IgG interactions and retain stability. Here, we use both wild-type and transgenic human FcRn mice to identify antibodies with enhanced half-life and increased opsonophagocytic killing in models of S. aureus infection and demonstrate that antibody-based immunotherapy can be improved by modifying Fcγ. Our experiments also show that by competing for FcRn-binding, staphylococci effectively reduce the half-life of antibodies during infection. These observations may have profound impact in treating cancer, autoimmune, and asthma patients colonized or infected with S. aureus and undergoing monoclonal antibody treatment.


Assuntos
Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Opsonização/imunologia , Engenharia de Proteínas , Sequência de Aminoácidos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Ativação do Complemento , Relação Dose-Resposta a Droga , Relação Dose-Resposta Imunológica , Humanos , Fagocitose/imunologia , Ligação Proteica , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/imunologia , Receptores Fc/genética , Proteína Estafilocócica A/imunologia , Staphylococcus aureus/imunologia
19.
PLoS Pathog ; 18(1): e1010227, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041705

RESUMO

The blood-clotting protein fibrin(ogen) plays a critical role in host defense against invading pathogens, particularly against peritoneal infection by the Gram-positive microbe Staphylococcus aureus. Here, we tested the hypothesis that direct binding between fibrin(ogen) and S. aureus is a component of the primary host antimicrobial response mechanism and prevention of secondary microbe dissemination from the peritoneal cavity. To establish a model system, we showed that fibrinogen isolated from FibγΔ5 mice, which express a mutant form lacking the final 5 amino acids of the fibrinogen γ chain (termed fibrinogenγΔ5), did not support S. aureus adherence when immobilized and clumping when in suspension. In contrast, purified wildtype fibrinogen supported robust adhesion and clumping that was largely dependent on S. aureus expression of the receptor clumping factor A (ClfA). Following peritoneal infection with S. aureus USA300, FibγΔ5 mice displayed worse survival compared to WT mice coupled to reduced bacterial killing within the peritoneal cavity and increased dissemination of the microbes into circulation and distant organs. The failure of acute bacterial killing, but not enhanced dissemination, was partially recapitulated by mice infected with S. aureus USA300 lacking ClfA. Fibrin polymer formation and coagulation transglutaminase Factor XIII each contributed to killing of the microbes within the peritoneal cavity, but only elimination of polymer formation enhanced systemic dissemination. Host macrophage depletion or selective elimination of the fibrin(ogen) ß2-integrin binding motif both compromised local bacterial killing and enhanced S. aureus systemic dissemination, suggesting fibrin polymer formation in and of itself was not sufficient to retain S. aureus within the peritoneal cavity. Collectively, these findings suggest that following peritoneal infection, the binding of S. aureus to stabilized fibrin matrices promotes a local, macrophage-mediated antimicrobial response essential for prevention of microbe dissemination and downstream host mortality.


Assuntos
Fibrinogênio/imunologia , Peritonite/imunologia , Infecções Estafilocócicas/imunologia , Animais , Coagulase/imunologia , Coagulase/metabolismo , Fibrina/metabolismo , Camundongos , Peritonite/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo
20.
J Immunol ; 208(2): 454-463, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930781

RESUMO

Inflammation involves a delicate balance between pathogen clearance and limiting host tissue damage, and perturbations in this equilibrium promote disease. Patients suffering from autoimmune diseases, such as systemic lupus erythematosus (SLE), have higher levels of serum S100A9 protein and increased risk for infection. S100A9 is highly abundant within neutrophils and modulates antimicrobial activity in response to bacterial pathogens. We reasoned that increased serum S100A9 in SLE patients reflects accumulation of S100A9 protein in neutrophils and may indicate altered neutrophil function. In this study, we demonstrate elevated S100A9 protein within neutrophils from SLE patients, and MRL/lpr mice associates with lower mitochondrial superoxide, decreased suicidal neutrophil extracellular trap formation, and increased susceptibility to Staphylococcus aureus infection. Furthermore, increasing mitochondrial superoxide production restored the antibacterial activity of MRL/lpr neutrophils in response to S. aureus These results demonstrate that accumulation of intracellular S100A9 associates with impaired mitochondrial homeostasis, thereby rendering SLE neutrophils inherently less bactericidal.


Assuntos
Calgranulina B/sangue , Armadilhas Extracelulares/imunologia , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Mitocôndrias/metabolismo , Staphylococcus aureus/imunologia , Animais , Suscetibilidade a Doenças/imunologia , Feminino , Homeostase/fisiologia , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/crescimento & desenvolvimento , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...